Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Borowczak, A; Dare, E; Tofel-Grehl, C (Ed.)A teacher’s working context is an important factor in how they make sense of and enact curriculum. Understanding how external factors (e.g. state and/or district policies, school cultural norms) interplay with teachers’ personal resources (e.g. self-understanding, rules of thumb for decision-making) can help identify supports for implementation of increasingly available standard aligned curriculum materials. However, in science education, limited research has explored how curriculum enactments are influenced by this complex interplay. In this qualitative embedded case study, we investigated how four middle school science teachers within the same school district used their internal resources to make sense of external factors when enacting new NGSS-aligned place-based curriculum materials. Data collection occurred over multiple years and included semi-structured individual and focus group interviews, lesson plans, weekly surveys, observations, and memos. Using thematic analysis, we found that a new district-level policy implementing a 6-week science assessment caused differential enactments of the unit, depending on which internal resources teachers drew on to make sense of the curriculum materials. Our findings contribute to further understanding how internal personal resources and external factors support and impede science teachers’ use of curriculum materials in ways that align, or do not align, with recent reform-based learning outlined in the NGSS.more » « lessFree, publicly-accessible full text available May 5, 2026
-
The research investigates the design and development of a serious game to teach green building design and energy literacy in rural middle schools in the United States. The paper presents a pilot study, education mini-game development integrated with parametric BIM and energy simulations. The game scenario was built on the developed science curriculum modules in our funded research, teaching building energy technologies such as daylighting, artificial lighting, window configurations, building materials, solar panels, etc. The mini-game, Illumi’s World, presents a baseline science lab and a media library of typical public schools in the United States. The players have the opportunity to improve energy literacy in several ways: manipulating the building configurations and the energy options, reviewing energy costs and emission level changes, and monitoring the performance from the game dashboards. This paper presents background theory, curriculum design, the mini-game development framework, methods and tools for energy simulation and BIM visualization, and the findings and challenges.more » « less
-
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com , we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.more » « less
An official website of the United States government
